46 research outputs found

    Heat generation and transfer in automotive dry clutch engagement

    Get PDF
    Dynamic behaviour of automotive dry clutches depends on the frictional characteristics of the contact between the friction lining material, the flywheel, and the pressure plate during the clutch engagement process. During engagement due to high interfacial slip and relatively high contact pressures, generated friction gives rise to contact heat, which affects the material behaviour and the associated frictional characteristics. In practice excess interfacial slipping and generated heat during torque transmission can result in wear of the lining, thermal distortion of the friction disc, and reduced useful life of the clutch. This paper provides measurement of friction lining characteristics for dry clutches for new and worn state under representative operating conditions pertaining to interfacial slipping during clutch engagement, applied contact pressures, and generated temperatures. An analytical thermal partitioning network model of the clutch assembly, incorporating the flywheel, friction lining, and the pressure plate is presented, based upon the principle of conservation of energy. The results of the analysis show a higher coefficient of friction for the new lining material which reduces the extent of interfacial slipping during clutch engagement, thus reducing the frictional power loss and generated interfacial heating. The generated heat is removed less efficiently from worn lining. This might be affected by different factors observed such as the reduced lining thickness and the reduction of density of the material but mainly because of poorer thermal conductivity due to the depletion of copper particles in its microstructure as the result of wear. The study integrates frictional characteristics, microstructural composition, mechanisms of heat generation, effect of lining wear, and heat transfer in a fundamental manner, an approach not hitherto reported in literature

    A model of the PI cycle reveals the regulating roles of lipid-binding proteins and pitfalls of using mosaic biological data

    Get PDF
    The phosphatidylinositol (PI) cycle is central to eukaryotic cell signaling. Its complexity, due to the number of reactions and lipid and inositol phosphate intermediates involved makes it difficult to analyze experimentally. Computational modelling approaches are seen as a way forward to elucidate complex biological regulatory mechanisms when this cannot be achieved solely through experimental approaches. Whilst mathematical modelling is well established in informing biological systems, many models are often informed by data sourced from multiple unrelated cell types (mosaic data) or from purified enzyme data. In this work, we develop a model of the PI cycle informed by experimental and omics data taken from a single cell type, namely platelets. We were able to make a number of predictions regarding the regulation of PI cycle enzymes, the importance of the number of receptors required for successful GPCR signaling and the importance of lipid- and protein-binding proteins in regulating second messenger outputs. We then consider how pathway behavior differs, when fully informed by data for HeLa cells and show that model predictions remain consistent. However, when informed by mosaic experimental data model predictions greatly vary illustrating the risks of using mosaic datasets from unrelated cell types

    Synchronized ATP oscillations have a critical role in prechondrogenic condensation during chondrogenesis

    Get PDF
    The skeletal elements of embryonic limb are prefigured by prechondrogenic condensation in which secreted molecules such as adhesion molecules and extracellular matrix have crucial roles. However, how the secreted molecules are controlled to organize the condensation remains unclear. In this study, we examined metabolic regulation of secretion in prechondrogenic condensation, using bioluminescent monitoring systems. We here report on ATP oscillations in the early step of chondrogenesis. The ATP oscillations depended on both glycolysis and mitochondrial respiration, and their synchronization among cells were achieved via gap junctions. In addition, the ATP oscillations were driven by Ca2+ oscillations and led to oscillatory secretion in chondrogenesis. Blockade of the ATP oscillations prevented cellular condensation. Furthermore, the degree of cellular condensation increased with the frequency of ATP oscillations. We conclude that ATP oscillations have a critical role in prechondrogenic condensation by inducing oscillatory secretion

    Myosin VI in PC12 cells plays important roles in cell migration and proliferation but not in catecholamine secretion

    Get PDF
    Myosin VI (MVI) is the only known myosin walking towards minus end of actin filaments and is believed to play distinct role(s) than other myosins. We addressed a role of this unique motor in secretory PC12 cells, derived from rat adrenal medulla pheochromocytoma using cell lines with reduced MVI synthesis (produced by means of siRNA). Decrease of MVI expression caused severe changes in cell size and morphology, and profound defects in actin cytoskeleton organization and Golgi structure. Also, significant inhibition of cell migration as well as cell proliferation was observed. Flow cytometric analysis revealed that MVI-deficient cells were arrested in G0/G1 phase of the cell cycle but did not undergo increased senescence as compared with control cells. Also, neither polyploidy nor aneuploidy were detected. Surprisingly, no significant effect on noradrenaline secretion was observed. These data indicate that in PC12 cells MVI is involved in cell migration and proliferation but is not crucial for stimulation-dependent catecholamine release

    The sense of smell, its signalling pathways, and the dichotomy of cilia and microvilli in olfactory sensory cells

    Get PDF
    Smell is often regarded as an ancillary perception in primates, who seem so dominated by their sense of vision. In this paper, we will portray some aspects of the significance of olfaction to human life and speculate on what evolutionary factors contribute to keeping it alive. We then outline the functional architecture of olfactory sensory neurons and their signal transduction pathways, which are the primary detectors that render olfactory perception possible. Throughout the phylogenetic tree, olfactory neurons, at their apical tip, are either decorated with cilia or with microvilli. The significance of this dichotomy is unknown. It is generally assumed that mammalian olfactory neurons are of the ciliary type only. The existance of so-called olfactory microvillar cells in mammals, however, is well documented, but their nature remains unclear and their function orphaned. This paper discusses the possibility, that in the main olfactory epithelium of mammals ciliated and microvillar sensory cells exist concurrently. We review evidence related to this hypothesis and ask, what function olfactory microvillar cells might have and what signalling mechanisms they use

    A neuroscientist's guide to lipidomics

    Full text link
    Nerve cells mould the lipid fabric of their membranes to ease vesicle fusion, regulate ion fluxes and create specialized microenvironments that contribute to cellular communication. The chemical diversity of membrane lipids controls protein traffic, facilitates recognition between cells and leads to the production of hundreds of molecules that carry information both within and across cells. With so many roles, it is no wonder that lipids make up half of the human brain in dry weight. The objective of neural lipidomics is to understand how these molecules work together; this difficult task will greatly benefit from technical advances that might enable the testing of emerging hypotheses

    A case of sigmoid volvulus

    No full text
    corecore